Početna / FAQ

FAQ

saželi smo neke uobičajene probleme

proizvodnja

  • Q.

    Da li pravite proizvode po meri?

    A.

    Da. Kupcima pružamo OEM/ODM rješenja. OEM minimalna količina narudžbe je 10,000 komada.

  • Q.

    Kako pakujete proizvode?

    A.

    Pakujemo po propisima Ujedinjenih nacija, a takođe možemo da obezbedimo i specijalna pakovanja prema zahtevima kupaca.

  • Q.

    Kakvu potvrdu imate?

    A.

    Imamo ISO9001, CB, CE, UL, BIS, UN38.3, KC, PSE.

  • Q.

    Dajete li besplatne uzorke?

    A.

    Baterije snage ne veće od 10WH obezbjeđujemo kao besplatne uzorke.

  • Q.

    Koji su vaši proizvodni kapaciteti?

    A.

    120,000-150,000 komada dnevno, svaki proizvod ima drugačiji proizvodni kapacitet, možete razgovarati o detaljnim informacijama prema e-mailu.

  • Q.

    Koliko je vremena potrebno za proizvodnju?

    A.

    Oko 35 dana. Konkretno vrijeme se može dogovoriti putem e-pošte.

  • Q.

    Koliko je vrijeme proizvodnje vašeg uzorka?

    A.

    Dvije sedmice (14 dana).

drugi

  • Q.

    Koji su uslovi plaćanja?

    A.

    Uglavnom prihvatamo 30% akontacije kao depozit i 70% prije isporuke kao konačnu uplatu. Ostale metode se mogu pregovarati.

  • Q.

    Koji su uslovi isporuke?

    A.

    Nudimo: FOB i CIF.

  • Q.

    Koji je način plaćanja?

    A.

    Prihvatamo plaćanje putem TT.

  • Q.

    Na kojim ste tržištima prodavali?

    A.

    Prevozili smo robu u Severnu Evropu, Zapadnu Evropu, Severnu Ameriku, Bliski Istok, Aziju, Afriku i druga mesta.

tehnologija

  • Q.

    Šta je baterija?

    A.

    Batteries are a kind of energy conversion and storage devices that convert chemical or physical energy into electrical energy through reactions. According to the different energy conversion of the battery, the battery can be divided into a chemical battery and a biological battery. A chemical battery or chemical power source is a device that converts chemical energy into electrical energy. It comprises two electrochemically active electrodes with different components, respectively, composed of positive and negative electrodes. A chemical substance that can provide media conduction is used as an electrolyte. When connected to an external carrier, it delivers electrical energy by converting its internal chemical energy. A physical battery is a device that converts physical energy into electrical energy.

  • Q.

    Koje su razlike između primarnih i sekundarnih baterija?

    A.

    Glavna razlika je u tome što je aktivni materijal drugačiji. Aktivni materijal sekundarne baterije je reverzibilan, dok aktivni materijal primarne baterije nije. Samopražnjenje primarne baterije je mnogo manje nego kod sekundarne baterije. Ipak, unutrašnji otpor je mnogo veći od otpora sekundarne baterije, pa je kapacitet opterećenja manji. Osim toga, kapacitet primarne baterije specifičan za masu i zapreminski specifičan kapacitet je značajniji od onih dostupnih punjivih baterija.

  • Q.

    Koji je elektrohemijski princip Ni-MH baterija?

    A.

    Ni-MH batteries use Ni oxide as the positive electrode, hydrogen storage metal as the negative electrode, and lye (mainly KOH) as the electrolyte. When the nickel-hydrogen battery is charged: Positive electrode reaction: Ni(OH)2 + OH- → NiOOH + H2O–e- Adverse electrode reaction: M+H2O +e-→ MH+ OH- When the Ni-MH battery is discharged: Positive electrode reaction: NiOOH + H2O + e- → Ni(OH)2 + OH- Negative electrode reaction: MH+ OH- →M+H2O +e-

  • Q.

    Koji je elektrohemijski princip litijum-jonskih baterija?

    A.

    The main component of the positive electrode of the lithium-ion battery is LiCoO2, and the negative electrode is mainly C. When charging, Positive electrode reaction: LiCoO2 → Li1-xCoO2 + xLi+ + xe- Negative reaction: C + xLi+ + xe- → CLix Total battery reaction: LiCoO2 + C → Li1-xCoO2 + CLix The reverse reaction of the above reaction occurs during discharge.

  • Q.

    Koji su uobičajeni standardi za baterije?

    A.

    Commonly used IEC standards for batteries: The standard for nickel-metal hydride batteries is IEC61951-2: 2003; the lithium-ion battery industry generally follows UL or national standards. Commonly used national standards for batteries: The standards for nickel-metal hydride batteries are GB/T15100_1994, GB/T18288_2000; the standards for lithium batteries are GB/T10077_1998, YD/T998_1999, and GB/T18287_2000. In addition, the commonly used standards for batteries also include the Japanese Industrial Standard JIS C on batteries. IEC, the International Electrical Commission (International Electrical Commission), is a worldwide standardization organization composed of electrical committees of various countries. Its purpose is to promote the standardization of the world's electrical and electronic fields. IEC standards are standards formulated by the International Electrotechnical Commission.

  • Q.

    Koja je glavna struktura Ni-MH baterije?

    A.

    Glavne komponente nikl-metal hidridnih baterija su pozitivna elektroda (nikl oksid), ploča negativne elektrode (legura za skladištenje vodonika), elektrolit (uglavnom KOH), membranski papir, zaptivni prsten, poklopac pozitivne elektrode, kućište baterije itd.

  • Q.

    Koje su glavne strukturne komponente litijum-jonskih baterija?

    A.

    Glavne komponente litijum-jonskih baterija su gornji i donji poklopci baterije, ploča pozitivne elektrode (aktivni materijal je litijum kobalt oksid), separator (posebna kompozitna membrana), negativna elektroda (aktivni materijal je ugljen), organski elektrolit, kućište baterije (podijeljen na dvije vrste čelične ljuske i aluminijske školjke) i tako dalje.

  • Q.

    Koliki je unutrašnji otpor baterije?

    A.

    Odnosi se na otpor koji doživljava struja koja teče kroz bateriju dok baterija radi. Sastoji se od omskog unutrašnjeg otpora i polarizacionog unutrašnjeg otpora. Značajan unutrašnji otpor baterije će smanjiti radni napon pražnjenja baterije i skratiti vrijeme pražnjenja. Na unutrašnji otpor uglavnom utiču materijal baterije, proizvodni proces, struktura baterije i drugi faktori. To je važan parametar za mjerenje performansi baterije. Napomena: Generalno, unutrašnji otpor u napunjenom stanju je standard. Za izračunavanje unutrašnjeg otpora baterije treba koristiti poseban mjerač unutrašnjeg otpora umjesto multimetra u rasponu oma.

  • Q.

    Koliki je nazivni napon?

    A.

    Nazivni napon baterije odnosi se na napon koji se pokazuje tokom redovnog rada. Nominalni napon sekundarne nikl-kadmijum nikl-vodonik baterije je 1.2V; nominalni napon sekundarne litijumske baterije je 3.6V.

  • Q.

    Šta je napon otvorenog kola?

    A.

    Napon otvorenog kola se odnosi na razliku potencijala između pozitivne i negativne elektrode baterije kada baterija ne radi, odnosno kada struja ne teče kroz kolo. Radni napon, poznat i kao terminalni napon, odnosi se na razliku potencijala između pozitivnog i negativnog pola baterije kada baterija radi, odnosno kada postoji prekomjerna struja u kolu.

  • Q.

    Koliki je kapacitet baterije?

    A.

    Kapacitet baterije se dijeli na nazivnu snagu i stvarnu sposobnost. Nazivni kapacitet baterije odnosi se na odredbu ili garanciju da baterija treba da isprazni minimalnu količinu električne energije pod određenim uslovima pražnjenja tokom projektovanja i proizvodnje oluje. IEC standard propisuje da se nikl-kadmijum i nikl-metal hidridne baterije pune na 0.1C tokom 16 sati i prazne na 0.2C do 1.0V na temperaturi od 20°C±5°C. Nazivni kapacitet baterije izražen je kao C5. Predviđeno je da se litijum-jonske baterije pune 3 sata pod prosječnom temperaturom, konstantna struja (1C)-konstantni napon (4.2V) kontrolišu zahtjevne uslove, a zatim se prazne na 0.2C do 2.75V kada je ispražnjena električna energija nazivnog kapaciteta. Stvarni kapacitet baterije odnosi se na stvarnu snagu koju oslobađa oluja pod određenim uslovima pražnjenja, na koju uglavnom utiču brzina pražnjenja i temperatura (tako striktno govoreći, kapacitet baterije treba da odredi uslove punjenja i pražnjenja). Jedinica kapaciteta baterije je Ah, mAh (1Ah=1000mAh).

  • Q.

    Koliki je preostali kapacitet pražnjenja baterije?

    A.

    Kada se punjiva baterija isprazni velikom strujom (kao što je 1C ili više), zbog "efekta uskog grla" koji postoji u internoj brzini difuzije strujne prekomjerne struje, baterija je dostigla terminalni napon kada kapacitet nije potpuno ispražnjen , a zatim koristi malu struju kao što je 0.2C može nastaviti s uklanjanjem, sve dok 1.0V/komadu (nikl-kadmijum i nikl-hidrogen baterija) i 3.0V/komadu (litijumska baterija), oslobođeni kapacitet se naziva preostali kapacitet.

  • Q.

    Šta je platforma za pražnjenje?

    A.

    Platforma za pražnjenje Ni-MH punjivih baterija se obično odnosi na opseg napona u kojem je radni napon baterije relativno stabilan kada se prazni pod određenim sistemom pražnjenja. Njegova vrijednost je povezana sa strujom pražnjenja. Što je struja veća, to je težina manja. Platforma za pražnjenje litijum-jonskih baterija je generalno da prestane da se puni kada je napon 4.2V, a sadašnji je manji od 0.01C pri konstantnom naponu, zatim se ostavi 10 minuta i isprazni do 3.6V pri bilo kojoj brzini pražnjenja. struja. To je neophodan standard za mjerenje kvaliteta baterija.

  • Q.

    Koja je metoda označavanja punjivih baterija koju je odredio IEC?

    A.

    Prema IEC standardu, oznaka Ni-MH baterije sastoji se od 5 dijelova. 01) Battery type: HF and HR indicate nickel-metal hydride batteries 02) Battery size information: including the diameter and height of the round battery, the height, width, and thickness of the square battery, and the values ​​are separated by a slash, unit: mm 03) Discharge characteristic symbol: L means that the suitable discharge current rate is within 0.5C M indicates that the suitable discharge current rate is within 0.5-3.5C H indicates that the suitable discharge current rate is within 3.5-7.0C X indicates that the battery can work at a high rate discharge current of 7C-15C. 04) High-temperature battery symbol: represented by T 05) Battery connection piece: CF represents no connection piece, HH represents the connection piece for battery pull-type series connection, and HB represents the connection piece for side-by-side series connection of battery belts. Na primjer, HF18/07/49 predstavlja kvadratnu nikl-metal hidridnu bateriju širine 18 mm, 7 mm i visine 49 mm. KRMT33/62HH predstavlja nikl-kadmijum bateriju; brzina pražnjenja je između 0.5C-3.5, visokotemperaturna serija pojedinačna baterija (bez priključnog dijela), prečnik 33mm, visina 62mm. According to the IEC61960 standard, the identification of the secondary lithium battery is as follows: 01) The battery logo composition: 3 letters, followed by five numbers (cylindrical) or 6 (square) numbers. 02) Prvo slovo: označava štetan materijal elektrode baterije. I—predstavlja litijum-jonski sa ugrađenom baterijom; L—predstavlja litijum metalnu elektrodu ili elektrodu od legure litijuma. 03) Drugo slovo: označava materijal katode baterije. C—elektroda na bazi kobalta; N—elektroda na bazi nikla; M—elektroda na bazi mangana; V—elektroda na bazi vanadija. 04) Treće slovo: označava oblik baterije. R-predstavlja cilindričnu bateriju; L predstavlja kvadratnu bateriju. 05) Brojevi: Cilindrična baterija: 5 brojeva respektivno označavaju prečnik i visinu oluje. Jedinica za promjer je milimetar, a veličina je desetina milimetra. Kada je bilo koji promjer ili visina veći ili jednak 100 mm, treba dodati dijagonalnu liniju između dvije veličine. Kvadratna baterija: 6 brojeva označava debljinu, širinu i visinu oluje u milimetrima. Kada je bilo koja od tri dimenzije veća ili jednaka 100 mm, treba dodati kosu crtu između dimenzija; ako je bilo koja od tri dimenzije manja od 1 mm, ispred ove dimenzije se dodaje slovo "t", a jedinica ove dimenzije je jedna desetina milimetra. Na primjer, ICR18650 predstavlja cilindričnu sekundarnu litijum-jonsku bateriju; materijal katode je kobalt, prečnik joj je oko 18 mm, a visina oko 65 mm. ICR20/1050. ICP083448 predstavlja kvadratnu sekundarnu litijum-jonsku bateriju; materijal katode je kobalt, njegova debljina je oko 8 mm, širina je oko 34 mm, a visina je oko 48 mm. ICP08/34/150 predstavlja kvadratnu sekundarnu litijum-jonsku bateriju; materijal katode je kobalt, njegova debljina je oko 8 mm, širina je oko 34 mm, a visina oko 150 mm.

  • Q.

    Koji su materijali za pakovanje baterije?

    A.

    01) Non-dry meson (paper) such as fiber paper, double-sided tape 02) PVC film, trademark tube 03) Connecting sheet: stainless steel sheet, pure nickel sheet, nickel-plated steel sheet 04) Lead-out piece: stainless steel piece (easy to solder) Pure nickel sheet (spot-welded firmly) 05) Plugs 06) Protection components such as temperature control switches, overcurrent protectors, current limiting resistors 07) Carton, paper box 08) Plastic shell

  • Q.

    Koja je svrha pakiranja, montaže i dizajna baterija?

    A.

    01) Beautiful, brand 02) The battery voltage is limited. To obtain a higher voltage, it must connect multiple batteries in series. 03) Protect the battery, prevent short circuits, and prolong battery life 04) Size limitation 05) Easy to transport 06) Design of special functions, such as waterproof, unique appearance design, etc.

  • Q.

    Koji su glavni aspekti performansi sekundarne baterije općenito?

    A.

    Uglavnom uključuje napon, unutrašnji otpor, kapacitet, gustinu energije, unutrašnji pritisak, brzinu samopražnjenja, životni vek, performanse zaptivanja, bezbednosne performanse, performanse skladištenja, izgled, itd. Postoje i prenapunjenje, prekomerno pražnjenje i otpornost na koroziju.

  • Q.

    Koji su testovi pouzdanosti baterije?

    A.

    01) Cycle life 02) Different rate discharge characteristics 03) Discharge characteristics at different temperatures 04) Charging characteristics 05) Self-discharge characteristics 06) Storage characteristics 07) Over-discharge characteristics 08) Internal resistance characteristics at different temperatures 09) Temperature cycle test 10) Drop test 11) Vibration test 12) Capacity test 13) Internal resistance test 14) GMS test 15) High and low-temperature impact test 16) Mechanical shock test 17) High temperature and high humidity test

  • Q.

    Koje su stavke za testiranje sigurnosti baterije?

    A.

    01) Short circuit test 02) Overcharge and over-discharge test 03) Withstand voltage test 04) Impact test 05) Vibration test 06) Heating test 07) Fire test 09) Variable temperature cycle test 10) Trickle charge test 11) Free drop test 12) low air pressure test 13) Forced discharge test 15) Electric heating plate test 17) Thermal shock test 19) Acupuncture test 20) Squeeze test 21) Heavy object impact test

  • Q.

    Koje su standardne metode punjenja?

    A.

    Charging method of Ni-MH battery: 01) Constant current charging: the charging current is a specific value in the whole charging process; this method is the most common; 02) Constant voltage charging: During the charging process, both ends of the charging power supply maintain a constant value, and the current in the circuit gradually decreases as the battery voltage increases; 03) Constant current and constant voltage charging: The battery is first charged with constant current (CC). When the battery voltage rises to a specific value, the voltage remains unchanged (CV), and the wind in the circuit drops to a small amount, eventually tending to zero. Lithium battery charging method: Constant current and constant voltage charging: The battery is first charged with constant current (CC). When the battery voltage rises to a specific value, the voltage remains unchanged (CV), and the wind in the circuit drops to a small amount, eventually tending to zero.

  • Q.

    Koje je standardno punjenje i pražnjenje Ni-MH baterija?

    A.

    Međunarodni standard IEC propisuje da je standardno punjenje i pražnjenje nikl-metal hidridnih baterija: prvo ispraznite bateriju na 0.2C do 1.0V po komadu, zatim punite na 0.1C 16 sati, ostavite je 1 sat i stavite je na 0.2C do 1.0V/komad, što je za punjenje i pražnjenje baterije standard.

  • Q.

    Šta je pulsno punjenje? Kakav je uticaj na performanse baterije?

    A.

    Pulsno punjenje općenito koristi punjenje i pražnjenje, postavljanje na 5 sekundi, a zatim otpuštanje na 1 sekundu. On će smanjiti većinu kiseonika koji se stvara tokom procesa punjenja u elektrolite pod impulsom pražnjenja. Ne samo da ograničava količinu unutrašnjeg isparavanja elektrolita, već će se stare baterije koje su jako polarizirane postupno oporaviti ili približiti izvornom kapacitetu nakon 5-10 puta punjenja i pražnjenja korištenjem ove metode punjenja.

  • Q.

    Šta je punjenje kapaljkom?

    A.

    Punjenje se koristi da se nadoknadi gubitak kapaciteta uzrokovan samopražnjenjem baterije nakon što je potpuno napunjena. Općenito, pulsno punjenje se koristi za postizanje gore navedene svrhe.

  • Q.

    Šta je efikasnost punjenja?

    A.

    Efikasnost punjenja se odnosi na mjeru stepena do kojeg se električna energija koju troši baterija tokom procesa punjenja pretvara u hemijsku energiju koju baterija može pohraniti. Na to uglavnom utiču tehnologija baterije i temperatura radnog okruženja oluje – generalno, što je temperatura okoline viša, to je niža efikasnost punjenja.

  • Q.

    Šta je efikasnost pražnjenja?

    A.

    Efikasnost pražnjenja se odnosi na stvarnu snagu ispražnjenu na terminalnom naponu pod određenim uslovima pražnjenja do nazivnog kapaciteta. Na njega uglavnom utiču brzina pražnjenja, temperatura okoline, unutrašnji otpor i drugi faktori. Općenito, što je veća brzina pražnjenja, to je veća brzina pražnjenja. Što je niža efikasnost pražnjenja. Što je niža temperatura, to je niža efikasnost pražnjenja.

  • Q.

    Kolika je izlazna snaga baterije?

    A.

    The output power of a battery refers to the ability to output energy per unit time. It is calculated based on the discharge current I and the discharge voltage, P=U*I, the unit is watts. The lower the internal resistance of the battery, the higher the output power. The internal resistance of the battery should be less than the internal resistance of the electrical appliance. Otherwise, the battery itself consumes more power than the electrical appliance, which is uneconomical and may damage the battery.

  • Q.

    Kakvo je samopražnjenje sekundarne baterije? Koja je brzina samopražnjenja različitih tipova baterija?

    A.

    Self-discharge is also called charge retention capability, which refers to the retention capability of the battery's stored power under certain environmental conditions in an open circuit state. Generally speaking, self-discharge is mainly affected by manufacturing processes, materials, and storage conditions. Self-discharge is one of the main parameters to measure battery performance. Generally speaking, the lower the storage temperature of the battery, the lower the self-discharge rate, but it should also note that the temperature is too low or too high, which may damage the battery and become unusable. After the battery is fully charged and left open for some time, a certain degree of self-discharge is average. The IEC standard stipulates that after fully charged, Ni-MH batteries should be left open for 28 days at a temperature of 20℃±5℃ and humidity of (65±20)%, and the 0.2C discharge capacity will reach 60% of the initial total.

  • Q.

    Šta je 24-satni test samopražnjenja?

    A.

    The self-discharge test of lithium battery is: Generally, 24-hour self-discharge is used to test its charge retention capacity quickly. The battery is discharged at 0.2C to 3.0V, constant current. Constant voltage is charged to 4.2V, cut-off current: 10mA, after 15 minutes of storage, discharge at 1C to 3.0 V test its discharge capacity C1, then set the battery with constant current and constant voltage 1C to 4.2V, cut-off current: 10mA, and measure 1C capacity C2 after being left for 24 hours. C2/C1*100% should be more significant than 99%.

  • Q.

    Koja je razlika između unutrašnjeg otpora napunjenog stanja i unutrašnjeg otpora ispražnjenog stanja?

    A.

    The internal resistance in the charged state refers to the internal resistance when the battery is 100% fully charged; the internal resistance in the discharged state refers to the internal resistance after the battery is fully discharged. Generally speaking, the internal resistance in the discharged state is not stable and is too large. The internal resistance in the charged state is more minor, and the resistance value is relatively stable. During the battery's use, only the charged state's internal resistance is of practical significance. In the later period of the battery's help, due to the exhaustion of the electrolyte and the reduction of the activity of internal chemical substances, the battery's internal resistance will increase to varying degrees.

  • Q.

    Šta je statički otpor? Šta je dinamički otpor?

    A.

    Statički unutrašnji otpor je unutrašnji otpor baterije tokom pražnjenja, a dinamički unutrašnji otpor je unutrašnji otpor baterije tokom punjenja.

  • Q.

    Da li je standardni test otpornosti na prekomjerno punjenje?

    A.

    The IEC stipulates that the standard overcharge test for nickel-metal hydride batteries is: Discharge the battery at 0.2C to 1.0V/piece, and charge it continuously at 0.1C for 48 hours. The battery should have no deformation or leakage. After overcharge, the discharge time from 0.2C to 1.0V should be more than 5 hours.

  • Q.

    Šta je standard IEC test životnog ciklusa?

    A.

    IEC stipulates that the standard cycle life test of nickel-metal hydride batteries is: After the battery is placed at 0.2C to 1.0V/pc 01) Charge at 0.1C for 16 hours, then discharge at 0.2C for 2 hours and 30 minutes (one cycle) 02) Charge at 0.25C for 3 hours and 10 minutes, and discharge at 0.25C for 2 hours and 20 minutes (2-48 cycles) 03) Charge at 0.25C for 3 hours and 10 minutes, and release to 1.0V at 0.25C (49th cycle) 04) Charge at 0.1C for 16 hours, put it aside for 1 hour, discharge at 0.2C to 1.0V (50th cycle). For nickel-metal hydride batteries, after repeating 400 cycles of 1-4, the 0.2C discharge time should be more significant than 3 hours; for nickel-cadmium batteries, repeating a total of 500 cycles of 1-4, the 0.2C discharge time should be more critical than 3 hours.

  • Q.

    Koliki je unutrašnji pritisak baterije?

    A.

    Refers to the internal air pressure of the battery, which is caused by the gas generated during the charging and discharging of the sealed battery and is mainly affected by battery materials, manufacturing processes, and battery structure. The main reason for this is that the gas generated by the decomposition of moisture and organic solution inside the battery accumulates. Generally, the internal pressure of the battery is maintained at an average level. In the case of overcharge or over-discharge, the internal pressure of the battery may increase: For example, overcharge, positive electrode: 4OH--4e → 2H2O + O2↑; ① The generated oxygen reacts with the hydrogen precipitated on the negative electrode to produce water 2H2 + O2 → 2H2O ② If the speed of reaction ② is lower than that of reaction ①, the oxygen generated will not be consumed in time, which will cause the internal pressure of the battery to rise.

  • Q.

    Šta je standardni test zadržavanja naboja?

    A.

    IEC stipulates that the standard charge retention test for nickel-metal hydride batteries is: After putting the battery at 0.2C to 1.0V, charge it at 0.1C for 16 hours, store it at 20℃±5℃ and humidity of 65%±20%, keep it for 28 days, then discharge it to 1.0V at 0.2C, and Ni-MH batteries should be more than 3 hours. The national standard stipulates that the standard charge retention test for lithium batteries is: (IEC has no relevant standards) the battery is placed at 0.2C to 3.0/piece, and then charged to 4.2V at a constant current and voltage of 1C, with a cut-off wind of 10mA and a temperature of 20 After storing for 28 days at ℃±5℃, discharge it to 2.75V at 0.2C and calculate the discharge capacity. Compared with the battery's nominal capacity, it should be no less than 85% of the initial total.

  • Q.

    Šta je test kratkog spoja?

    A.

    Koristite žicu sa unutrašnjim otporom ≤100mΩ da povežete pozitivne i negativne polove potpuno napunjene baterije u kutiji zaštićenoj od eksplozije da biste kratko spojili pozitivne i negativne polove. Baterija ne bi trebalo da eksplodira ili da se zapali.

  • Q.

    Koji su testovi visoke temperature i visoke vlažnosti?

    A.

    The high temperature and humidity test of Ni-MH battery are: After the battery is fully charged, store it under constant temperature and humidity conditions for several days, and observe no leakage during storage. The high temperature and high humidity test of lithium battery is: (national standard) Charge the battery with 1C constant current and constant voltage to 4.2V, cut-off current of 10mA, and then put it in a continuous temperature and humidity box at (40±2)℃ and relative humidity of 90%-95% for 48h, then take out the battery in (20 Leave it at ±5)℃ for two h. Observe that the appearance of the battery should be standard. Then discharge to 2.75V at a constant current of 1C, and then perform 1C charging and 1C discharge cycles at (20±5)℃ until the discharge capacity Not less than 85% of the initial total, but the number of cycles is not more than three times.

  • Q.

    Šta je eksperiment povećanja temperature?

    A.

    Nakon što je baterija potpuno napunjena, stavite je u pećnicu i zagrijte sa sobne temperature brzinom od 5°C/min. Nakon što se baterija potpuno napuni, stavite je u pećnicu i zagrijte sa sobne temperature brzinom od 5°C/min. Kada temperatura rerne dostigne 130°C, držite je 30 minuta. Baterija ne bi trebalo da eksplodira ili da se zapali. Kada temperatura rerne dostigne 130°C, držite je 30 minuta. Baterija ne bi trebalo da eksplodira ili da se zapali.

  • Q.

    Šta je eksperiment cikliranja temperature?

    A.

    The temperature cycle experiment contains 27 cycles, and each process consists of the following steps: 01) The battery is changed from average temperature to 66±3℃, placed for 1 hour under the condition of 15±5%, 02) Switch to a temperature of 33±3°C and humidity of 90±5°C for 1 hour, 03) The condition is changed to -40±3℃ and placed for 1 hour 04) Put the battery at 25℃ for 0.5 hours These four steps complete a cycle. After 27 cycles of experiments, the battery should have no leakage, alkali climbing, rust, or other abnormal conditions.

  • Q.

    Šta je test pada?

    A.

    Nakon što se baterija ili baterija potpuno napune, tri puta se spuštaju sa visine od 1m na betonsko (ili cementno) tlo kako bi se dobili udari u nasumičnim smjerovima.

  • Q.

    Šta je eksperiment vibracije?

    A.

    The vibration test method of Ni-MH battery is: After discharging the battery to 1.0V at 0.2C, charge it at 0.1C for 16 hours, and then vibrate under the following conditions after being left for 24 hours: Amplitude: 0.8mm Make the battery vibrate between 10HZ-55HZ, increasing or decreasing at a vibration rate of 1HZ every minute. The battery voltage change should be within ±0.02V, and the internal resistance change should be within ±5mΩ. (Vibration time is 90min) The lithium battery vibration test method is: After the battery is discharged to 3.0V at 0.2C, it is charged to 4.2V with constant current and constant voltage at 1C, and the cut-off current is 10mA. After being left for 24 hours, it will vibrate under the following conditions: The vibration experiment is carried out with the vibration frequency from 10 Hz to 60 Hz to 10 Hz in 5 minutes, and the amplitude is 0.06 inches. The battery vibrates in three-axis directions, and each axis shakes for half an hour. The battery voltage change should be within ±0.02V, and the internal resistance change should be within ±5mΩ.

  • Q.

    Šta je test uticaja?

    A.

    Nakon što se baterija potpuno napuni, postavite tvrdu šipku vodoravno i bacite predmet od 20 funti sa određene visine na tvrdu šipku. Baterija ne bi trebalo da eksplodira ili da se zapali.

  • Q.

    Šta je eksperiment penetracije?

    A.

    Nakon što se baterija potpuno napuni, provucite ekser određenog prečnika kroz centar oluje i ostavite iglu u bateriji. Baterija ne bi trebalo da eksplodira ili da se zapali.

  • Q.

    Šta je vatreni eksperiment?

    A.

    Postavite potpuno napunjenu bateriju na uređaj za grijanje s jedinstvenim zaštitnim poklopcem za vatru i nijedan otpad neće proći kroz zaštitni poklopac.

  • Q.

    Koje sertifikate su prošli proizvodi kompanije?

    A.

    Prošao je sertifikaciju sistema kvaliteta ISO9001:2000 i sertifikaciju sistema zaštite životne sredine ISO14001:2004; proizvod je dobio EU CE sertifikat i Severnu Ameriku UL sertifikat, prošao SGS test zaštite životne sredine i dobio je patentnu licencu kompanije Ovonic; Istovremeno, PICC je odobrio proizvode kompanije u svjetskom Scope-u.

  • Q.

    Šta je baterija spremna za upotrebu?

    A.

    Baterija Ready-to-use je novi tip Ni-MH baterije sa visokom stopom zadržavanja punjenja koju je lansirala kompanija. To je baterija otporna na skladištenje s dvostrukim performansama primarne i sekundarne baterije i može zamijeniti primarnu bateriju. To znači da se baterija može reciklirati i ima veću preostalu snagu nakon skladištenja za isto vrijeme kao i obične sekundarne Ni-MH baterije.

  • Q.

    ​​Why is Ready-To-Use (HFR) the ideal product to replace disposable batteries?

    A.

    Compared with similar products, this product has the following remarkable features: 01) Smaller self-discharge; 02) Longer storage time; 03) Over-discharge resistance; 04) Long cycle life; 05) Especially when the battery voltage is lower than 1.0V, it has a good capacity recovery function; More importantly, this type of battery has a charge retention rate of up to 75% when stored in an environment of 25°C for one year, so this battery is the ideal product to replace disposable batteries.

  • Q.

    Koje su mjere opreza pri korištenju baterije?

    A.

    01) Please read the battery manual carefully before use; 02) The electrical and battery contacts should be clean, wiped clean with a damp cloth if necessary, and installed according to the polarity mark after drying; 03) Do not mix old and new batteries, and different types of batteries of the same model can not be combined so as not to reduce the efficiency of use; 04) The disposable battery cannot be regenerated by heating or charging; 05) Do not short-circuit the battery; 06) Do not disassemble and heat the battery or throw the battery into the water; 07) When electrical appliances are not in use for a long time, it should remove the battery, and it should turn the switch off after use; 08) Do not discard waste batteries randomly, and separate them from other garbage as much as possible to avoid polluting the environment; 09) When there is no adult supervision, do not allow children to replace the battery. Small batteries should be placed out of the reach of children; 10) it should store the battery in a cool, dry place without direct sunlight.

  • Q.

    Koja je razlika između raznih standardnih punjivih baterija?

    A.

    At present, nickel-cadmium, nickel-metal hydride, and lithium-ion rechargeable batteries are widely used in various portable electrical equipment (such as notebook computers, cameras, and mobile phones). Each rechargeable battery has its unique chemical properties. The main difference between nickel-cadmium and nickel-metal hydride batteries is that the energy density of nickel-metal hydride batteries is relatively high. Compared with batteries of the same type, the capacity of Ni-MH batteries is twice that of Ni-Cd batteries. This means that the use of nickel-metal hydride batteries can significantly extend the working time of the equipment when no additional weight is added to the electrical equipment. Another advantage of nickel-metal hydride batteries is that they significantly reduce the "memory effect" problem in cadmium batteries to use nickel-metal hydride batteries more conveniently. Ni-MH batteries are more environmentally friendly than Ni-Cd batteries because there are no toxic heavy metal elements inside. Li-ion has also quickly become a common power source for portable devices. Li-ion can provide the same energy as Ni-MH batteries but can reduce weight by about 35%, suitable for electrical equipment such as cameras and laptops. It is crucial. Li-ion has no "memory effect," The advantages of no toxic substances are also essential factors that make it a common power source. It will significantly reduce the discharge efficiency of Ni-MH batteries at low temperatures. Generally, the charging efficiency will increase with the increase of temperature. However, when the temperature rises above 45°C, the performance of rechargeable battery materials at high temperatures will degrade, and it will significantly shorten the battery's cycle life.

  • Q.

    Koja je brzina pražnjenja baterije? Kolika je satnica oslobađanja oluje?

    A.

    Brzina pražnjenja se odnosi na odnos brzine između struje pražnjenja (A) i nazivnog kapaciteta (A•h) tokom sagorevanja. Pražnjenje po satu odnosi se na sate potrebne za pražnjenje nazivnog kapaciteta pri određenoj izlaznoj struji.

  • Q.

    Zašto je potrebno održavati bateriju toplom prilikom snimanja zimi?

    A.

    Since the battery in a digital camera has a low temperature, the active material activity is significantly reduced, which may not provide the camera's standard operating current, so outdoor shooting in areas with low temperature, especially. Pay attention to the warmth of the camera or battery.

  • Q.

    Koji je raspon radne temperature litijum-jonskih baterija?

    A.

    Punjenje -10—45℃ Pražnjenje -30—55℃

  • Q.

    Da li se mogu kombinovati baterije različitog kapaciteta?

    A.

    Ako pomiješate nove i stare baterije različitih kapaciteta ili ih koristite zajedno, može doći do curenja, nultog napona itd. To je zbog razlike u snazi ​​tokom procesa punjenja, što uzrokuje da se neke baterije prepune tokom punjenja. Neke baterije nisu potpuno napunjene i imaju kapacitet tokom pražnjenja. Baterija visokog kapaciteta nije potpuno ispražnjena, a baterija malog kapaciteta je previše ispražnjena. U takvom začaranom krugu baterija je oštećena, curi ili ima nizak (nulti) napon.

  • Q.

    Šta je vanjski kratki spoj i kakav utjecaj ima na performanse baterije?

    A.

    Spajanje dva vanjska kraja baterije na bilo koji provodnik će uzrokovati vanjski kratki spoj. Kratak tok može dovesti do ozbiljnih posljedica za različite tipove baterija, kao što su porast temperature elektrolita, povećanje unutrašnjeg tlaka zraka, itd. Ako tlak zraka premašuje otporni napon poklopca baterije, baterija će procuriti. Ova situacija ozbiljno oštećuje bateriju. Ako sigurnosni ventil pokvari, može čak uzrokovati eksploziju. Stoga, nemojte praviti kratki spoj na bateriji spolja.

  • Q.

    Koji su glavni faktori koji utiču na trajanje baterije?

    A.

    01) Charging: When choosing a charger, it is best to use a charger with correct charging termination devices (such as anti-overcharge time devices, negative voltage difference (-V) cut-off charging, and anti-overheating induction devices) to avoid shortening the battery life due to overcharging. Generally speaking, slow charging can prolong the service life of the battery better than fast charging. 02) Discharge: a. The depth of discharge is the main factor affecting battery life. The higher the depth of release, the shorter the battery life. In other words, as long as the depth of discharge is reduced, it can significantly extend the battery's service life. Therefore, we should avoid over-discharging the battery to a very low voltage. b. When the battery is discharged at a high temperature, it will shorten its service life. c. If the designed electronic equipment cannot completely stop all current, if the equipment is left unused for a long time without taking out the battery, the residual current will sometimes cause the battery to be excessively consumed, causing the storm to over-discharge. d. When using batteries with different capacities, chemical structures, or different charge levels, as well as batteries of various old and new types, the batteries will discharge too much and even cause reverse polarity charging. 03) Storage: If the battery is stored at a high temperature for a long time, it will attenuate its electrode activity and shorten its service life.

  • Q.

    Da li se baterija može čuvati u aparatu nakon što se potroši ili ako se ne koristi duže vreme?

    A.

    Ako neće koristiti električni uređaj duži period, najbolje je izvaditi bateriju i staviti je na niskotemperaturno, suho mjesto. Ako nije, čak i ako je električni uređaj isključen, sistem će i dalje učiniti da baterija ima nisku izlaznu struju, što će skratiti vijek trajanja oluje.

  • Q.

    Koji su bolji uslovi za skladištenje baterija? Da li trebam u potpunosti napuniti bateriju za dugotrajno skladištenje?

    A.

    According to the IEC standard, it should store the battery at a temperature of 20℃±5℃ and humidity of (65±20)%. Generally speaking, the higher the storage temperature of the storm, the lower the remaining rate of capacity, and vice versa, the best place to store the battery when the refrigerator temperature is 0℃-10℃, especially for primary batteries. Even if the secondary battery loses its capacity after storage, it can be recovered as long as it is recharged and discharged several times. In theory, there is always energy loss when the battery is stored. The inherent electrochemical structure of the battery determines that the battery capacity is inevitably lost, mainly due to self-discharge. Usually, the self-discharge size is related to the solubility of the positive electrode material in the electrolyte and its instability (accessible to self-decompose) after being heated. The self-discharge of rechargeable batteries is much higher than that of primary batteries. If you want to store the battery for a long time, it is best to put it in a dry and low-temperature environment and keep the remaining battery power at about 40%. Of course, it is best to take out the battery once a month to ensure the excellent storage condition of the storm, but not to completely drain the battery and damage the battery.

  • Q.

    Šta je standardna baterija?

    A.

    A battery that is internationally prescribed as a standard for measuring potential (potential). It was invented by American electrical engineer E. Weston in 1892, so it is also called Weston battery. The positive electrode of the standard battery is the mercury sulfate electrode, the negative electrode is cadmium amalgam metal (containing 10% or 12.5% ​​cadmium), and the electrolyte is acidic, saturated cadmium sulfate aqueous solution, which is saturated cadmium sulfate and mercurous sulfate aqueous solution.

  • Q.

    Koji su mogući razlozi nultog ili niskog napona jedne baterije?

    A.

    01) External short circuit or overcharge or reverse charge of the battery (forced over-discharge); 02) The battery is continuously overcharged by high-rate and high-current, which causes the battery core to expand, and the positive and negative electrodes are directly contacted and short-circuited; 03) The battery is short-circuited or slightly short-circuited. For example, improper placement of the positive and negative poles causes the pole piece to contact the short circuit, positive electrode contact, etc.

  • Q.

    Koji su mogući razlozi nultog ili niskog napona baterije?

    A.

    01) Whether a single battery has zero voltage; 02) The plug is short-circuited or disconnected, and the connection to the plug is not good; 03) Desoldering and virtual welding of lead wire and battery; 04) The internal connection of the battery is incorrect, and the connection sheet and the battery are leaked, soldered, and unsoldered, etc.; 05) The electronic components inside the battery are incorrectly connected and damaged.

  • Q.

    Koje su metode kontrole za sprječavanje prekomjernog punjenja baterije?

    A.

    To prevent the battery from being overcharged, it is necessary to control the charging endpoint. When the battery is complete, there will be some unique information that it can use to judge whether the charging has reached the endpoint. Generally, there are the following six methods to prevent the battery from being overcharged: 01) Peak voltage control: Determine the end of charging by detecting the peak voltage of the battery; 02) dT/DT control: Determine the end of charging by detecting the peak temperature change rate of the battery; 03) △T control: When the battery is fully charged, the difference between the temperature and the ambient temperature will reach the maximum; 04) -△V control: When the battery is fully charged and reaches a peak voltage, the voltage will drop by a particular value; 05) Timing control: control the endpoint of charging by setting a specific charging time, generally set the time required to charge 130% of the nominal capacity to handle;

  • Q.

    Koji su mogući razlozi zašto se baterija ili baterija ne mogu napuniti?

    A.

    01) Zero-voltage battery or zero-voltage battery in the battery pack; 02) The battery pack is disconnected, the internal electronic components and the protection circuit is abnormal; 03) The charging equipment is faulty, and there is no output current; 04) External factors cause the charging efficiency to be too low (such as extremely low or extremely high temperature).

Niste pronašli ono što ste htjeli?Kontakt

close_white
blizu

Napišite upit ovdje

odgovorite u roku od 6 sati, sva pitanja su dobrodošla!